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This paper is part of a project, the goal of which is the development of the optimal spatial distributions of the
porosity and permeability of a large-scale porous medium by using complementary static and dynamic data for
the medium. The data include limited measurements of the porosity, which the method honors �preserves� in
the optimal model and utilizes its correlation function, together with the first-arrival �FA� times, at a certain
number of receivers, of seismic waves that have propagated in the medium and the time dependence of the
pressure of a fluid flowing in the medium. The method uses the simulated-annealing �SA� technique in order to
develop the optimal model. In the present paper we utilize the porosity and FA times data in order to develop
the optimal spatial distribution of the porosity. This is accomplished by combining the SA method with a
simulator that solves for the numerical solution of the acoustic-wave equation from which the FA times are
estimated, limited porosity, and FA times data. We show that the optimal model not only honors the data, but
also provides accurate estimates of the porosities in the rest of the porous medium. The efficiency of the
computations is discussed in detail.
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I. INTRODUCTION

Due to their practical importance and large number of
applications, the development of accurate models of porous
materials �1,2� and other types of heterogeneous media �3,4�
has been the subject of numerous studies over the past sev-
eral decades. In particular, reconstruction of such disordered
media, i.e., development of models for them based on a lim-
ited amount of experimental data for some of their proper-
ties, has been investigated by many research groups �5–12�.
Most of the methods that were developed by these groups
�5–11� were based on information that represents one-point
�volume fraction� and two-point correlation functions.
Torquato and co-workers �12–14� suggested another method,
a variation of the simulated annealing �SA� technique �15�,
which can, in principle, be used with any type and number of
correlation functions. Their method is, in effect, one of opti-
mization, i.e., one by which a limited amount of data for a
given system is utilized and the SA technique is used to
develop the optimal model that satisfies the constraints that
the data impose on the optimization problem. Torquato and
co-workers used the method for reconstructing a variety of
porous and composite materials. In particular, they used the
method �14� to reconstruct laboratory-scale samples of Berea
and Fontainebleau sandstones, which are important to the
understanding of fluid flow and transport in oil reservoirs and
groundwater aquifers.

The above works focused on reconstructing and modeling
of laboratory-scale porous media. The focus of the present
paper is on the development of optimal models of large-scale
�LS� porous media, those that are much larger than
laboratory-scale porous materials considered previously. Ex-
amples include oil, gas, and geothermal reservoirs, and

groundwater aquifers. However, as we explain below, the
method is equally applicable to laboratory-scale porous me-
dia. Such porous formations are very heterogeneous, with the
heterogeneities manifesting themselves as broad spatial dis-
tributions of the porosity and permeability, and the aniso-
tropy caused by stratification �layering� of the formations. To
model LS porous media by any method, one must first ana-
lyze the various types of data that are typically available,
which may be divided into two important groups.

�1� In one group are what we call the direct data. Two
important properties of LS porous media, namely, the distri-
butions of their porosity � and permeability k, belong to this
group. The porosity is estimated routinely along, for ex-
ample, wells during their drilling, or evaluated relatively ac-
curately by indirect methods, such as measuring the resistiv-
ity of samples of the porous medium, and also through
seismic data �see below�. The permeabilities can be esti-
mated by in situ nuclear-magnetic resonance �16� which is,
however, costly as one must make a very large number of
measurements. They can also be measured by coring and
laboratory measurements, which may not be very accurate
because the state of a sample porous medium at a certain
depth in a natural formation may be quite different from its
state in a laboratory. Alternatively, very useful information
about the permeabilities’ spatial distribution is obtained
through analysis of the time dependence of the pressures or
fluxes of fluids at, for example, certain points in the porous
medium where the fluids are produced �e.g., production wells
in an oil reservoir�. Such data are rountinely recorded and
their amount is typically very extensive. Assuming that the
structure of a porous medium does not change much over
time scales on the order of months or a few years, the poros-
ity and permeability data represent static information.

�2� In the second group are what we call the indirect data,
the most important of which are seismic recordings. Seismic
wave propagation and reflection are used to not only esti-*Electronic address: moe@iran.usc.edu
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mate, for example, the hydrocarbon content of a potential oil
reservoir, but also its porosity distribution, as well as gaining
insight into the spatial distributions of its fractures, faults,
and strata. Since seismic records are inherently time depen-
dent, they represent dynamic data.

In this paper we propose a different approach to the de-
velopment of an optimal model of a porous formation based
on the SA method. The method uses limited, but complemen-
tary, information—both static and dynamic—in order to de-
velop the optimal model. More specifically, the aim of our
work is to obtain the optimal spatial distributions of the po-
rosity and permeability of a porous medium. In the present
paper we focus on the simpler problem of determining the
optimal spatial distribution of a porous formation’s porosity,
which is important not only to the spatial distribution and
volumes of fluids that the formation contains, but also to
their flow in the formation. Consistent with what happens in
practice, we assume that �i� limited data are available for the
porosities, in the form of porosity logs measured in certain
directions �for example, along some wells� in the porous me-
dium, and that �ii� we also have limited information on the
first-arrival �FA� times of seismic waves that reach certain
receivers installed in the porous medium. The waves result
from a point source, or a line or plane of sources, depending
on the seismic experiment. One distinct advantage of using
data for the FA times in the development of the optimal
model is that extensive data for the FA times are usually
available for any given LS porous medium.

In order to compute the FA times, we solve the full three-
dimensional �3D� wave equation which, to our knowledge,
has never been attempted before in conjunction with an op-
timization method. An important advantage of solving the
wave equation as part of the optimization process is that it is
not subject to the high-frequency assumption that is essential
to traditional and standard methods �17� in which the FA
times are estimated by ray tracing. In addition, the method
allows for any type of heterogeneities. In particular, long-
range correlations, of the type that typically exist in the spa-
tial distributions of � and k �1,2,18�, and the anisotropy in
the form of stratification, are incorporated in the optimal
model. Although various optimzation methods have been
used in the past with seismic and other types of data
�17,19,20�, none used the full numerical simulation of the
wave equation or tried to reconstruct the spatial distributions
of the heterogeneities of the type that we consider. Luo and
Schuster �21� did solve the 2D wave equation in order to
develop a model of a porous medium based on seismic data,
but their method was completely different from what we
present in this paper, and was not one of optimization.

The rest of this paper is organized as follows. In Sec. II
the problem that we study is described precisely. Section III
presents the details of numerical simulation of the equation
that describes the propagation of seismic waves in a porous
medium. Section IV describes the formulation of the prob-
lem in terms of an optimization process, while Sec. V pre-
sents the details of the optimization algorithm based on the
SA method. The results are presented and discussed in Sec.
VI. The efficiency of the computations and how they scale
with the size of the computational grid is discussed in Sec.
VII, while the paper is summarized in Sec. VIII.

II. PROBLEM STATEMENT

We represent the porous medium by a computational grid
of size Lx�Ly �Lz, consisting of cubic grid blocks to which
the effective values of �, the porosity, and K���, the bulk
modulus, are assigned. Both � and K vary spatially. In the
present work we used Lx=Ly =Lz=15. Larger systems can
also be simulated at higher computational cost but, for the
purpose of illustrating the method, the grid size that we use
suffices. Consistent with what is done in practice, we assume
that there are a number of wells in the porous medium, along
which the porosity has been measured. More generally �par-
ticularly if one wishes to use the method for developing op-
timal models of laboratory-scale porous media�, one may
assume that estimates of the local porosities at certain points
of the porous formation are available.

In the present work we assume that there are five wells in
the z �vertical� direction, positioned at grid blocks �3,3 ,n�,
�3,Lz−2,n�, �Lz−2,3 ,n�, ��Lz+1� /2 , �Lz+1� /2 ,n�, and
�Lz−2,Lz−2,n�, with, n=1, . . . ,Lz. Values of � for such
blocks are assumed to be known and are fixed during the
optimization process. However, measured data along any
number of wells, or at other locations throughout the porous
medium, can be used in the model. We also assume, consis-
tent with the common practice, that as a result of having a
source, seismic waves propagate throughout the porous me-
dium, and that their first-arrival �FA� times—the time that the
wave front first reaches a certain point—have been recorded
by a number of receivers distributed throughout the porous
medium.

The question then is, what is the optimal spatial distribu-
tion of the porosity that honors �preserves� the known values
of �, and reproduces as closely as possible the data for the
seismic waves FA times at the receivers? To develop a
method for obtaining such an optimal model, we need to be
able to numerically solve the equation that governs propaga-
tion of seismic waves in a disordered porous medium. We
now describe how we accomplish this.

III. NUMERICAL SIMULATION OF PROPAGATION
OF SEISMIC WAVES

We model the porous formation as an elastic porous solid,
and assume that the propagation of seismic waves in the
formation is described by the 3D acoustic-wave equation,
represented by the scalar-wave equation �22,23�. Because the
porous medium is heterogeneous, its density ��x� and bulk
modulus K�x� at any point x in the medium vary spatially.
Thus, to simulate acoustic-wave propagation in such a po-
rous medium, we solve the following equation �22,23�:

�2

�t2��x,t� − � · ���x����x,t�� = S�x,t� , �1�

where ��x , t� is the wave amplitude at time t �often referred
to as the pressure in the geophysics literature�, ��x�
=K�x� /��x�, and S�x , t� is the source function for the waves.

Before proceeding further, we must specify how the bulk
modulus K depends on the porosity. Many empirical, semi-
empirical, and approximate theoretical relations for K���
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have been proposed in the past �3,4,24�. In the present work
we utilize the following equation:

Kdry = K0�1 − ��3/�1−��, �2�

first suggested by Krief et al. �25�. Here, Kdry and K0 are,
respectively, the bulk modulus of the dry rock and of the
pure solid mineral phase. Equation �2� has been shown to be
reasonably accurate in estimating the bulk modulus of a va-
riety of porous rock. Thus, using the obvious relation, �
=�0�1−��, where �0 is the density of the pure solid mineral
phase, values of ��x� can be specified at every point x. We
emphasize that any other relation between the bulk modulus
and the porosity can be used in the formulation of the prob-
lem that we describe in the present paper.

To solve Eq. �1�, we use the finite-difference �FD� method
with second-order discretization for the time derivative. As
for the spatial derivatives, we used both second- and fourth-
order discretization, but the difference between the numerical
solutions obtained with the two FD discretizations was very
small. Hence, using the FD approximation, we write ��x , t�
as �i,j,k

�n� , where n denotes the discrete time, and �i , j ,k� rep-
resents the center of a grid block located at x. The second-
order FD approximation �accurate to �t2� to the time-
derivative term of Eq. �1� is the standard form,

�2��x,t�
�t2 �

�i,j,k
�n+1� − 2�i,j,k

�n� + �i,j,
�n−1�

�t2 , �3�

where �t is the time step’s size. As for the spatial deriva-
tives, we first expand the right side of Eq. �1� as

� · ���x����x,t�� = ���x� · ���x,t� + ��x��2��x,t� .

The second-order FD approximations to the derivatives are,
once again, in the standard forms. Thus, for example,
�2��x , t� /�y2= ��i,j+1,k

�n� −2�i,j,k
�n� +�i,j−1,k

�n� � /�y2, where �y is the
linear size of the blocks in the y direction. As for the fourth-
order FD discretization, we approximate, for example, the
derivatives in the x direction by

�2��x,t�
�x2

�
− �i+2,j,k

�n� + 16�i+1,j,k
�n� − 30�i,j,k

�n� + 16�i−1,j,k
�n� − �i−2,j,k

�n�

12�x2 ,

�4�

���x,t�
�x

�
− �i+2,j,k

�n� + 8�i+1,j,k
�n� − 8�i−1,j,k

�n� + �i−2,j,k
�n�

12�x
, �5�

where �x is the grid blocks’ size in the x direction. Similar
expressions are written down for the partial derivatives with
respect to the y and the z directions. Such approximations
proved to be accurate enough and provide the required sta-
bility to the numerical results �26�.

To begin the simulations, we generate a pulse of waves
from a source. We consider two locations for the waves’
source. In one case, the source is placed at the center of the
computational grid. Reflective boundary conditions are used
for this case, i.e., the wave front is reflected at the bound-

aries. On the other hand, most natural porous media are an-
isotropic with their anisotropy caused by stratification. In a
practical application of propagation of seismic waves in a
porous formation for gaining information about its morphol-
ogy and contents, the main direction of wave propagation
may be more or less perpendicular to the planes of the strata.
For example, in seismic exploration the waves’ source is
typically on the ground surface while the strata are more or
less parallel to the ground surface. This implies that the main
wave front penetrates the ground and moves perpendicular to
the strata. Thus, in the second case, we place the source on
the top xy plane that represents the ground surface. In this
case, periodic boundary conditions are used in the x and y
directions �in the horizontal planes�, while the main wave
front propagates in the z �vertical� direction. Such conditions
do not distort the nature of the wave propagation, as we use
relatively a large grid. Typically, after 500 time steps or
fewer the wave front has reached all the grid blocks for the
first time, although the precise number of the time steps de-
pends on the formation’s heterogeneity. As for the source
function S�x , t�, we used the following to generate the pulse
of waves �any other source function may be used, however�:

S�xs,t� = − A exp�− 	�t − t0�2� , �6�

where A is a constant, 	 controls the wavelength of the wave,
and xs is the source’s location. The discretized wave equation
is then solved numerically throughout the system, and the FA
times for all the grid points are computed. The accuracy of
the solution was checked by considering the stability crite-
rion and the wavelength of the source �26�. The �dimension-
less� time step was �t=10−3.

IV. FORMULATION OF THE OPTIMIZATION PROBLEM

To begin the optimization process, we define, similarly to
the SA method for thermal systems �15�, an objective or
energy function E that we seek to minimize. E is given by

E = WwEw + W�E�, �7�

where

Ew = �
i=1

Nr

�tm�i� − ts�i�� �8�

is the contribution to E of the seismic data in terms of the FA
times, with Nr being the number of receivers at which the FA
times have been recorded. Here, tm�i� is the measured FA
time at receiver i, and ts�i� the corresponding value obtained
from simulation of the acoustic-wave equation described
above. E� represents the contribution of the porosity data,
the exact form of which depends on the data and the mor-
phology of the porous formation. Ww and W� are the weight
factors for the FA times and the porosity data, respectively.
The purpose of including different weight factors in Eq. �7�
is to attribute the proper importance to each component of
the total energy E. Before the optimization process is begun,
we should estimate the weight factors. This will be described
shortly.

We have considered several types of heterogeneous po-
rous formations which we now describe, after which the ex-
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act form of E� will be given. Extensive analysis of field-
scale data for the spatial distribution of the porosity indicates
�1,2,18� that such data contain long-range correlations that
may be described by a fractional Brownian motion �FBM�,
or other similar self-affine distributions. Recent works
�27,28� indicate that such long-range correlations have im-
portant implications for wave propagation in large-scale po-
rous media. Therefore, the inclusion of such long-range cor-
relations in the optimization method proposed in the present
paper, in conjunction with the acoustic-wave equation,
makes the method very useful and realistic for practical ap-
plications. Thus, we assume that the porosity data along the
five wells follow a FBM. However, any number of wells or,
more generally, any amount of data for � throughout the
porous media, can be included in the model. In fact, the
larger the number of the wells or the amount of data, the
more accurate the optimal model would be. The two-point
correlation function C�r� of a FBM is given by

C�r� = C1r2H, �9�

where C1=C�r=1�. Here, H is the Hurst exponent that char-
acterizes the type of correlations, such that for H
1/2 �H
�1/2� one has persistent or positive �antipersistent or nega-
tive� correlations in the successive increments of the FBM,
while for H=1/2 the trace of an FBM follows Brownian
motion and, thus, the increments are uncorrelated. Another
important property of a FBM is that its successive incre-
ments follow a Gaussian distribution �albeit with long-range
correlations�. Therefore, assuming that the porous formation
is isotropic, and that the grid blocks’ porosities in the inter-
well zones also follow the FBM �otherwise, there cannot be
any long-range correlations in the distribution of ��, we have

E� = �
r

� ln�C�r�� − 2Hm ln�r� − ln�C1�� , �10�

where Hm is the Hurst exponent that one obtains �measures�
from analyzing the porosity data along the wells, or any part
of the porous medium for which data for � are available.
Equation �10� implies that the optimal porosity distribution
in the interwell zones is one for which the correlation func-
tion follows Eq. �9�, since no other direct data are available
for such zones.

The analysis of porosity and other types of data indicates
sometimes �2,18� that one should divide the zones that con-
tain the observation wells �along which � and k are mea-
sured or estimated� into subzones, each of which is charac-
terized by a distinct H. In that case, the computational grid is
also divided into similar clusters or subzones, and the sum in
Eq. �10� is partitioned into several partial sums, each of
which would contain a distinct Hm that represents a cluster of
the wells and the part of the grid that represents that cluster.

The analysis of the porosity and other types of data may
also indicate �2,18� that the extent of the correlations may be
up to a distance r=�, beyond which the data become uncor-
related �� is referred to as the sill in geostatistics �29��.
Hence, for such cases the correlation function is given by

C�r� = �C1r2H, r � �

C1�2H, r 
 � ,
�11�

so that the energy function is given by, E�=Er+E�, with

Er = �
r=1

�

�ln�C�r�� − 2Hm ln�r� − ln�C1�� , �12�

E� = �
ri=�

Ln

�ln�C�ri�� − 2Hm ln��� − ln�C1�� , �13�

where Ln is the total distance over which the porosities in the
rest of the porous medium are not correlated with the poros-
ity data along the wells, or wherever that they have been
measured or estimated. The total energy function is then
given by

E = WwEw + WrEr + W�E�, �14�

where Ww, Wr, and W� are the corresponding weight factors
�see below�.

Natural porous media are almost always anisotropic, with
the anisotropy caused by stratification. If the strata are more
or less in the xy planes, with z representing the vertical di-
rection perpendicular to the strata, then we have two corre-
lation functions given by

Cxy�r� = C1
�xy�r2H, Cz�r� = C1

�z�r2H. �15�

For such cases the energy function E� is written as E�

=Exy +Ez, with

Exy = �
k=1

Lz ��
rij

��ln�Cxy�rij,k�� − 2Hm ln�rij� − ln�C1
�xy���	 ,

�16�

Ez = �
i=1

Lx

�
j=1

Ly ��
rk

��ln�Cz�i, j,rk�� − 2Hm ln�rk� − ln�C1
�z���	 .

�17�

The total energy function to be minimized by the SA method
is then given by

E = WwEw + WxyExy + WzEz. �18�

For the results that are described below, we used C1
�z� /C1

�xy�

=5. Clearly, one can also introduce cutoff length scales �xy
and �z in the above formulation as well, which we also con-
sidered. Note that the above formulation is completely gen-
eral. Any other correlation function, obtained based on the
analysis of the data, can be incorporated in the above formu-
lation. Our use of a power-law, nondecaying correlation
function is not only consistent with the extensive data for
many LS porous media �2,18�, but also puts the model under
a most stringent test of accuracy.

The weight factors introduced above must be estimated,
before the actual optimization process is begun. It can be
shown �30� that each weight factor is inversely proportional
to the average change of its corresponding energy function,
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Ww  �
��Ew���−1, W�  �
��E����−1. �19�

In practice, the average change of each energy function can-
not be computed analytically, but must be estimated numeri-
cally by evaluating the average change of, say, 104 indepen-
dent perturbations of the system, the way it is carried out
during the optimization by the SA method �see below�. Typi-
cal values that we computed were Ww�0.4–1.6, Wxy
�48–81, and Wz�3–4.8.

As is well known, the distributions that are to be opti-
mized by the SA process are the result of iterating the system
many times by varying the values of the quantities to be
optimized. Let B�i� be the value attributed to block i of the
grid. After some SA iterations and changing the B�i� values,
there is no guarantee that, 0�B�i��1, the range in which
the porosities should change. To resolve this issue, we define
two parameters for each block i; B�i�, which is used and
varied in the optimization process, and is required to follow
the specified correlation function, and ��i�, the actual poros-
ity of block i. The relation between B�i� and ��i� is given by

��i� =
B�i� − Bm

BM − Bm
��M − �m� + �m, �20�

where �M and �m are, respectively, the maximum and mini-
mum values of porosity that we expect the porous formation
to contain �which are estimated from the porosity data and
other types of geological information about the porous for-
mation�, and BM and Bm are the corresponding values of the
SA variable B�i� in the entire system for every iteration.

V. THE OPTIMIZATION PROCEDURE

Having defined all the important variables and described
the formulation of the problem in terms of an optimization
process, we now describe the optimization procedure based
on the SA method. The following computational procedure is
taken in order to obtain the optimal spatial distribution of the
porosity.

�1� The weight factors are estimated �see above�.
�2� We distribute the B�i� values in the grid blocks for

which the � values are not known. They are selected from a
Gaussian distribution. However, any other initial distribution
may be used, if need be. The corresponding porosities and
bulk moduli of the blocks and, therefore, the parameter ��x�
are then computed.

�3� The acoustic-wave equation is solved, and the FA
times ts are computed.

�4� The correlation function C�r� of the spatial distribu-
tion of the porosities is computed. To speed up the compu-
tations, two tricks are used �31�. �i� Except for the first itera-
tion in the optimization process, we compute the change in
C�r� between successive iterations of the SA process, not
C�r� itself. This reduces the simulation time very signifi-
cantly. �ii� C�r� is computed at selected values of r=ri with,
i=1,m ,m2 ,m3 , . . . , 1

2N, where N is the array’s size, and m
�1 is an integer, instead of computing C�r� at ri with, i
=1,2 , . . . ,N, which also reduces the computation time sig-
nificantly.

�5� The total energy function E is computed.
�6� The initial energy Eold is computed, and the initial

“temperature” T0 is set to be T0=Eold.
�7� A block i in the computational grid is selected at ran-

dom, and a direction—x, or y, or z—is also chosen with
equal probability. Then, the value B�i� associated with the
block is changed. The algorithm for doing so is �31� to
change B�i� to either

Bnew�i� = B�i + 1� + r �21�

or

Bnew�i� = B�i − 1� + r , �22�

with equal probabilities, where r is a random number se-
lected from a Gaussian distribution with a unit variance. We
found �31� this choice of r to result in accurate FBM arrays
with good computational efficiency. B�i±1� represent the
block values along the selected direction that are neighbors
of the block represented by B�i�. Equations �21� and �22� are
motivated by the fact that, as mentioned earlier, the succes-
sive increments in a FBM array follow a Gaussian distribu-
tion, and selecting r from this distribution ensures that this
property is automatically built into the array. However, more
generally, one may use other suitable algorithms, instead of
Eqs. �21� and �22�, or select the random number r from other
suitable distributions, depending on the nature of the corre-
lations.

The corresponding porosity ��i� is then computed using
Eq. �20�. Note that Eqs. �21� and �22� imply that the porosity
��i� of block i changes according to

�new�i� = ��i + 1� + r� �23�

or

�new�i� = ��i − 1� + r�, �24�

with

r� =
�M − �m

BM − Bm
r , �25�

which is a rescaled Gaussian number. Equation �25� ensures
that the final optimized porosity distribution will have the
correct correlation function. Note also that the above scheme
ensures that if the randomly selected block i lies along the
wells for which porosity data are available, the value of B�i�
will change by the SA iteration, but ��i� will not, hence
honoring �preserving� the porosity data.

�8� The new energy, Enew, and the change in the energy,
�E=Enew−Eold, are computed. If Enew�Eold, the change is
accepted and we go back to step �3� and set Eold=Enew. If
Enew
Eold, the change is accepted or rejected using the Me-
tropolis algorithm �i.e., based on a probability proportional to
the Boltzmann’s factor, exp�−�E /T��. In any case, we go
back to step �3�, but keep track of the number of accepted
changes. In addition, we also define and set a maximum
number of iterations at each temperature, and a maximum
cumulative total change in the energy. When the number of
accepted energy changes reach a suitable, a priori specified
number, or when the maximum allowed changes in the en-
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ergy is reached or exceeded, step �9� described below is un-
dertaken. Typically, at the initial steps of the SA process �at
high temperatures� the accepted changes are achieved before
the maximum allowed change is reached or exceeded. At
very low temperatures, on the other hand, the maximum al-
lowed changes in the energy are reached before the accepted
number of changes reaches its prespecified number, as the
number of rejections are large at such temperatures.

�9� The temperature is lowered according to the schedule,
Tnew=RTTold, where we used RT=0.9 or 0.99.

�10� We also test for convergence to the optimal system.
If, for any iteration, �E is less than some prespecified value,
the iteration is terminated. If not, the temperature is lowered
according to the above schedule �after a suitable number of
accepted changes is obtained, or if the maximum allowed
change is reached or exceeded�, and the iteration process is
continued. The total number of iterations for achieving con-
vergence depends on the system’s size and the value of the
Hurst exponent H. Convergence is typically reached after the
maximum-allowed change in the system’s energy is achieved
or exceeded two or three times.

VI. RESULTS AND DISCUSSIONS

Since natural and large-scale porous media are usually
stratified �anisotropic�, we present the results for this type of
systems, although we have also considered the case of iso-
tropic porous media �32�. To test the accuracy of the method,
we proceeded as follows. We first generated the spatial dis-
tribution of the porosities, with the statistics of a FBM and a
given Hurst exponent H �with or without a cutoff length
scale for the correlations; see below� and assigned them to
the grid blocks, based on which we computed the corre-
sponding blocks’ bulk moduli using Eq. �2�. The acoustic-
wave equation was then solved numerically and the corre-
sponding FA times at all the grid blocks were computed. We
then assumed that the generated porosities along the wells, as
well as the computed FA times at the receivers, represent the
“data” that are then used in the optimization process �the rest
of the generated porosities, as well as the computed FA times
for the rest of the porous medium, are kept for comparison�.
The question, then, is, to what extent the optimal model re-
produces the FA times at the rest of the grid blocks �not at
the receivers�, as well as the grid blocks’ porosities that are
not along the wells, or at locations where � has been mea-
sured.

For the simulations described below, the number of re-
ceivers was Nr=156 when we developed optimized models
of stratified porous media with the waves’ source being at the
center. When we introduced a cutoff length scale into the
correlation functions of the anisotropic media, we used Nr
=48 receivers. In both cases the receivers were distributed in
a sphere of radius L /2, with L=Lx=Ly =Lz, centered in the
middle of the computational grid. When the waves’ source
was on the top xy plane, the number of the receivers in the
anisotropic porous media with or without a cutoff length
scale for the correlations was, Nr=70. In this case, the re-
ceivers were assumed to be placed along the five wells �ex-
cept on the top xy surface� where the porosity data had been

measured. The idea is to check the model’s accuracy when
the number of receivers, their locations, and the positions of
the seismic wave source are varied. In what follows, the
results that we present for the FA times exclude those at the
receivers, while the optimal porosities do not include those
along the wells.

We first present and discuss the results for the case in
which the wave source is at the grid’s center. Figure 1 shows
the spatial distribution of the porosities in a vertical plane in
the middle of the medium, along with the optimal distribu-
tion that we obtained using the model. The results, which are
for H=0.3, indicate that the optimal distribution reproduces
nicely the layered structure of the porous medium. Figure 2
presents the computed FA times in the optimal model of Fig.
1 versus the actual values. The fact that nearly all the simu-
lated �optimal� FA times collapse onto the straight line, Y
=X �where they are equal to the actual values�, indicates the
model’s accuracy. This is also indicated by the fact that the
correlation coefficient R, defined by

FIG. 1. The actual porosity distribution in a vertical plane at the
center of the porous medium �left� and its comparison with the
optimal distribution �right�. Here, the Hurst exponent H=0.3, and
the waves’ source is at the medium’s center. Darkest and lightest
areas show, respectively, the smallest and largest porosities.
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FIG. 2. Comparison of the computed �optimal� and actual first-
arrival times in the porous medium of Fig. 1. R denotes the corre-
lation coefficient.
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R =

�
i

��Xi − 
X���Yi − 
Y���

��
i

�Xi − 
X��2�
i

�Yi − 
Y��2
, �26�

is nearly 1.0, where Xi and Yi are, respectively, the actual
�generated synthetically at the beginning� and computed op-
timal values of the quantity at grid block i, and 
X� and 
Y�
are their averages. The results shown in Fig. 2 are for a
single realization of the porous medium. Any other realiza-
tion also has the same accuracy.

Figure 3 tests the accuracy of five realizations of porosity
distribution of the porous medium of Fig. 1 �one with H
=0.3�. The correlation coefficient of the five realizations var-
ies from 0.71 to 0.81, not as accurate as the computed FA
times shown in Fig. 2. We must, however, keep in mind that
in order to obtain the optimal porosities, we only specified
their correlation function �with H=0.3� and the FA arrival
times. The average of the five realizations �also shown in
Fig. 3� is, however, much closer to the actual values, with a
correlation coefficient of R=0.87.

Figure 4 presents the actual porosity distribution for H
=0.7 in a vertical plane in the middle of the porous medium
and compares it with the optimal values. Once again, the
optimal distribution reproduces accurately the layered struc-
ture of the medium. The corresponding FA times in the po-
rous medium are shown in Fig. 5; the agreement between the
simulated and actual values is excellent again. The accuracy
of five realizations of the porous medium’s computed porosi-
ties with H=0.7 is tested in Fig. 6, where they are compared
with the actual values. In this case, the accuracy of the opti-
mal values is good; the correlation coefficient varies between
0.91 and 0.95, with the average porosities having R=0.96.
The reason is that H
0.5 corresponds to positive correla-
tions �persistence� between the porosities, implying a much
smoother porosity distribution than what one obtains with
H�0.5. This feature enables the SA method to better locate
the optimal distribution in the energy landscape. Note that
the analysis of extensive data for the porosity distribution of
many large-scale porous media, such as oil reservoirs around
the world, indicated �2,18� that 0.7�H�0.8. As Fig. 6 indi-

FIG. 3. Comparison of the computed �optimal� and actual po-
rosities for 5 realizations of the porous medium of Fig. 1. The
comparison with the average porosities is shown in the lowest right
panel. R is the correlation coefficient.

FIG. 4. Same as in Fig. 1, but for H=0.7. The waves’ source is
at the medium’s center.
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FIG. 5. Comparison of the computed and actual first-arrival
times in the porous medium of Fig. 4. R is the correlation
coefficient.
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cates, the computed optimal porosities for such values of H
are particularly accurate.

We now consider another type of heterogeneity by intro-
ducing a cutoff length scale for the correlations’ extent. We
take the cutoff � to be one-third of the medium’s linear size,
�= 1

3L. Although the computed FA times, shown in Fig. 7 for
H=0.3, are in excellent agreement with the actual values, the
optimal porosities, shown in Fig. 8, are much more scattered,
with a correlation coefficient R that varies between 0.69 and
0.76. The reason is that, beyond the cutoff length scale �, the
porosities are not correlated with one another and, therefore,
may be considered as random. A random system is, however,
much less constrained than a correlated one, which increases
the probability that the SA method locates the actual values
with less accuracy. However, similar to the case of H
0.5
without any cutoff length scale, the agreement between the
simulated and actual values of the porosities improves when
H
0.5. For example, Fig. 9 presents the results for H=0.7
and �= 1

3L, indicating much improved accuracy �the accuracy
of the computed FA times is as good as the previous cases
and, hence, they are not shown�.

We now present sample results for the case when the
seismic-wave source is in the system’s top plane, which is
similar to what is practiced in application of seismic-wave
propagation for exploration and obtaining data for, and in-
sight into, the morphology of a large-scale porous medium.
Figure 10 presents the actual porosities in a vertical plane in
the middle of the porous medium, obtained with H=0.3, and
compares them with the optimal distribution. Once again, all
the important features of the porous medium �in particular,
its strata structure� are reproduced by the optimal one. The
corresponding computed FA times are shown in Fig. 11, in-
dicating excellent agreement with the actual values. Similar
to the case in which the waves’ source was at the system’s
center, the computed �optimal� porosities are not as accurate
as the corresponding FA times. This is shown in Fig. 12 for
five realizations of the porosities, with the correlation coef-
ficient varying between 0.65 and 0.74. But, when the Hurst
exponent H
0.5, the accuracy of the results improves sig-
nificantly. For example, Fig. 13 tests the accuracy of such
results for 5 realizations of a porous medium with H=0.7.
Once again, the results are reasonably accurate, with the cor-
relation coefficient varying between 0.78 and 0.91, with that
of the average porosities being 0.94. Recall, as pointed out
above, that for almost all LS porous media for which the
porosity data have been analyzed, 0.7�H�0.8, and, as Fig.
13, indicates, the optimal porosities for such values of H are
accurate.

VII. THE EFFICIENCY OF THE COMPUTATIONS

At this point we must address three important questions,
namely, �i� how fast can the above computations be carried

FIG. 6. Comparison of the computed and actual porosities for
five realizations of the porous medium of Fig. 4. The lowest right
panel shows the comparison for the average of the five realizations,
with R being the correlation coefficient.
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FIG. 7. Comparison of the computed and actual first-arrival
times in a porous medium with H=0.3 and a cutoff length scale �
for the correlations which is one-third of the medium’s linear size.
The waves’ source is at the medium’s center.
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out? �ii� How does the computation time scale with the size
of the grid representing a porous medium, or with the num-
ber of variables to be optimized, and �iii� can the optimiza-
tion method developed in this paper be used in practice for
modeling of large-scale porous media? To answer these
questions, we consider the modeling of an oil reservoir. The
size of the grid that we utilized in our computations was
15�15�15. Hence, we needed to optimize the porosities of
3375 grid blocks. In practice, the geological model of an oil
reservoir may contain hundreds of thousands of grid blocks.
However, such a large grid is never used in the simulation of
flow and transport in an oil reservoir �1,2�. Instead, the geo-
logical model is first coarsened �33�, i.e., a scheme is used to
create another coarser grid, beginning with the geological
model, that has far fewer grid blocks of larger sizes, the
effective properties of which are assigned based on those of
the original geological model. Clearly, the grid that we de-
velop by the optimization process corresponds to the coars-
ened or upscaled grid used in practice in the simulation of
flow and transport in an oil reservoir. That this is so is due to
the fact that seismic data do not have a high-enough resolu-
tion for constructing the geological model. Instead, they are

usually used for developing the spatial properties of the grid
which is directly used in the simulations. The typical up-
scaled grid contains at most 15 000–20 000 grid blocks,
which is greater than the grid that we used in our computa-
tions by a factor of about 5–6.

To estimate the computation times for a larger grid, we
first point out that the times for the simulated-annealing trials
and constructing the proper correlation functions for the po-
rosities constitute a very small fraction of the total computa-
tion time. In fact, about 95% of the total computation time is
spent in solving the acoustic-wave equation, Eq. �1�, repeat-
edly after each SA trial. Thus, in what follows the estimates

FIG. 8. Comparison of the computed and actual porosities for
five realizations of the porous medium, for which the first-arrival
times are shown in Fig. 7. The lowest right panel shows the com-
parison for the average of the five realizations.

FIG. 9. Same as in Fig. 8, but for H=0.7.

FIG. 10. Same as in Fig. 1 �H=0.3�, but with the waves’ source
in the top plane of the medium.

DEVELOPMENT OF OPTIMAL MODELS OF POROUS¼ PHYSICAL REVIEW E 74, 026308 �2006�

026308-9



that we present are based on the computation times for solv-
ing Eq. �1� in a large grid. To estimate the computation
times, we consider the calculations on, �i� a single fast com-
puter, and �ii� a parallel machine with many nodes and pro-
cessors.

A. Computations using a single workstation

The total computation times for the grid that we used in
our calculation is about 3.2 CPU days on a Pentium 4 �P4�
machine at 3.8 GHz �the fastest P4 machine currently avail-
able�. Use of SUN AMD Opteron workstations reduces the
computations by at least 25%, which means the computa-
tions for the grid size that we used will further reduce to
about 2.4 CPU days on such workstations. Since, as pointed
out above, the computations are dominated by the time used
for solving the acoustic-wave equation repeatedly during the
SA iterations, we need to know how the times for computing
this solution scales with the grid size. Since we use a fully
explicit finite-difference approximation for discretizing the
acoustic-wave equation, obtaining its numerical solution
does not involve any iterative scheme. Instead, one
“marches” forward, starting from the grid points around the
wave source, and computes the waves’ amplitudes � grid
point by grid point. Under these conditions, the computation
times for solving the acoustic-wave equation scales linearly
with the grid size. Therefore, for a grid that contains about
20 000 blocks, the computation time for developing its opti-
mal porosity distribution will be on the order of 15 CPU days
on a dedicated workstation, completely acceptable and prac-
ticable with the currently available SUN workstations �even
with a P4 machine the computations will take on the order of
20 CPU days, which is still acceptable�. Note that such ma-
chines can have up to six processors and, therefore, the

computation time can be further reduced significantly.
We also point out that we have made no attempt to opti-

mize the method that we use for obtaining the numerical
solution of the acoustic-wave equation. If this is done, the
optimization process will be carried out more efficiently.
Consider, for example, the fact that after each SA iteration,
we change the porosity of only a single block. The rest of the
porosities remain intact. Therefore, the solutions of the wave
equation in the grid, before and after changing the porosity
of a single block, do not differ significantly in most of the
grid; they only differ slightly around the block where the
porosity is altered by the SA method. This is particularly true
when the grid size is very large, on the order of the size used
in the modeling and simulation of oil reservoirs. One should
be able to take advantage of this fact and develop a scheme
whereby, after each SA iteration, the waves’ amplitudes at
only a fraction of the grid blocks �around the block the po-
rosity of which is altered by the SA method� are updated,
with the rest remaining intact. This aspect is currently under
study.
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FIG. 11. Comparison of the computed and actual first-arrival
times in the porous medium of Fig. 10.

FIG. 12. Comparison of the computed and actual porosities for
five realizations of the porous medium of Fig. 10 �H=0.3�, in which
the waves’ source is in the medium’s top plane. The lowest right
panel shows the comparison for the average of the five realizations.
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B. Computations with parallel computers

If a computational grid is desired that must have a number
of blocks much larger than the 20 000 that we based our
estimates on, then one should resort to parallel computations.
Fast algorithms have already been developed for numerical
simulation of the acoustic-wave equation �34� and its gener-
alization to nonlinear and vector �elastic� wave equations
�35�, if the equations are discretized by the FD approxima-
tion. In these algorithms parallelization is based on the do-
main decomposition method, and the communications be-
tween the nodes are performed by using the message-passing
interface �MPI� strategy. These algorithms have a speed up
of at least one order of magnitude. When they are used on
massively parallel machines, their performance is excellent,
even for grids as large as 5003 �35�. Given that, as we
pointed out above, determining the numerical solution of the
wave equation takes nearly 95% of the total computation
time in the optimization method, these algorithms greatly
facilitate the use of grids that are much larger than what we
are discussing here.

Although the SA part of the method that we propose in
this paper takes a small fraction of the total computation
time, one must also have a parallel computational strategy
for the annealing part, in order to be able to use efficiently

the parallel algorithm for the solution of the wave equation.
Parallel strategies have been developed for the SA method
�36� with large speed up and high efficiency. Hence, one can
develop an integrated parallel computational strategy for the
optimization method that we propose in this paper, and carry
out simulations with large grids. We have already carried out
�37� such computations for a problem somewhat similar to
what we describe in the present paper, namely, development
of the optimal spatial distributions of the permeabilities and
porosities for a large-scale porous medium in which four
different gases flow and react with each other. The computa-
tions for this problem are even more intensive than what we
consider in the present paper, as one must solve �38� the
convection-diffusion-reaction equation �1,2� for each compo-
nent, where the reactions typically follow nonlinear kinetics.
In addition to the permeabilities and porosities, we have been
able to optimize �37� the spatial distribution of the reaction
rates of the four gases. Using a parallel computational algo-
rithm with the MPI strategy, we have been able to develop
the optimal spatial distributions of the permeabilities, porosi-
ties, and the reaction rates in a model porous medium with
tens of thousands of grid blocks.

VIII. SUMMARY

We assumed that propagation of seismic waves in a large-
scale porous medium is described by the acoustic-wave
equation. We showed that �1� if an efficient numerical simu-
lator that solves the acoustic-wave equation and provides
estimates of the first-arrival times of the waves at a certain
number of receivers scattered throughout a large-scale po-
rous medium is incorporated in �2� a simulator that utilizes
the simulated-annealing method and limited data for the FA
times and the porosities of the porous medium, one obtains
an optimal spatial distribution of the porosities that not only
honors �preserves� the limited data, but also is accurate. We
demonstrated this for several illustrative examples in which
the wave source was either at the center of the porous me-
dium or, as is commonly practiced, at its top. The formula-
tion is completely general, and is applicable to any type of
correlation function that the porosity data may follow.

There are several ways by which one can still improve the
accuracy of the method. Clearly, the more data are available,
the more constrained, and hence the more accurate, is the
optimal model. In fact, we shall show in a future publication
that incorporation of a limited amount of dynamic
�time-dependent� data for fluid flow in a porous medium in
the model that we described in this paper will not only result
in an improved spatial distribution of the porosities, but also
yield an accurate spatial distribution of the permeabilities of
the porous medium. In addition, we shall demonstrate that
the optimal model so obtained can provide accurate predic-
tions for the future behavior of the porous medium, and, in
particular, its flow properties.

Another way by which one can improve the model is the
use of the elastic-wave equation that supports propagation of
both the P and S waves �the acoustic-wave equation can
describe only the propagation of the P waves�. This would,
of course, entail much more intensive computations. Finally,

FIG. 13. Same as in Fig. 12, but for H=0.7.
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the use of larger computational grids, which would reduce,
or eliminate altogether, the effect of porous medium bound-
aries �which do affect the solution of the wave equation�,
should improve the model’s accuracy. These aspects will be
taken up in our future papers.
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